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1. Introduction 

An autonomous unmanned ground vehicle (UGV) finds its way through terrain to a destination 
point by means of on-board sensors.  Common sensors include one or more of stereo video, 
imaging LAser Detection And Ranging (LADAR), and navigation.  An important component of 
the UGV’s world model is vehicle pose (position and rotation with respect to world coordinate 
axes) and the trajectory of the pose through time.  Accurate knowledge of the pose is essential to 
the UGV’s ability to follow a prescribed path and to reach a specified location⎯the essence of 
autonomous mobility.  Knowledge of the pose is also necessary to integrate and correlate sensor 
information obtained at different times and from different poses as the UGV traverses the terrain.  
An essential element of the UGV’s sensor suite is the navigation sensor, which is dedicated to 
measuring its pose.  Given appropriate processing, other sensors can provide estimates of vehicle 
pose or derivatives thereof.  This report describes the comparison of pose estimates from a UGV 
navigation sensor with the egomotion (motion of the sensor itself) extracted from imagery 
recorded by a forward looking video camera on board the vehicle. 
 

2. Purpose 

The study was undertaken to explore implementation issues in fusing and integrating multi-
sensor data from a UGV.  Juxtaposition is the first step in fusion and requires that a number of 
issues be taken into account so that fusion is between consistent entities, i.e., “apples to apples”.  
Substantial effort has been devoted to collecting multi-sensor data in the UGV context (Shneier, 
2003), but few UGV implementations have taken advantage of synergies made possible by 
multiple sensors.  The initial focus of this study was to establish confidence in the rotational 
egomotion extracted from forward looking camera imagery by a new implementation created by 
the U.S. Army Research Laboratory (ARL).  Confidence was to have been established by a 
comparison of the egomotion estimates to the rotational motion sensed by a navigation sensor 
(described in section 4) that was believed to be reasonably accurate.  If the estimates of rotation 
were in substantial agreement, then the intent was to use measurements of translation from the 
navigation system to instantiate egomotion estimates of translation.   
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3. The Data 

The sensor data described in this report are extracted from a larger data set collected over two 
days in May 2003 at the ARL test facility at Fort Indiantown Gap (FITG), Pennsylvania, in 
support of ARL’s Collaborative Technology Alliance for Robotics.  More than 100 gigabytes of 
data were collected from a manned HMMWV1 (high mobility multi-purpose wheeled vehicle) 
equipped with a UGV sensor suite similar to that of the XUV (experimental unmanned vehicle) 
of ARL’s UGV Demo III (Shoemaker and Bornstein, 1998).  This HMMWV is managed and 
operated by personnel of the National Institute of Standards and Technology and is configured 
specifically for the collection of sensor data.  From this collection, 6.7 seconds of data (200 
video frames long) were selected for this comparison and were dubbed the “handrail sequence,” 
or HS.  The criteria used to select this sequence were 

1. The imagery was to be representative of the data set, that is largely unstructured, dominated 
by unmarked gravel roads and vegetation.  The HS included gravel, bushes, trees, and 
grass. 

2. The subset was to include some structure visible through most of the trajectory to enable 
identification of consistent features from frame to frame.  The HS featured a small wooden 
railing visible throughout the entire trajectory.   

3. The subset must include variation in yaw, pitch, and roll so that measurements of all 
rotational axes can be evaluated.  The HS was collected as the vehicle traversed a sweeping 
turn over rutted and uneven terrain, which satisfied the criterion. 

Several frames spanning this subset are shown in figure 1. 

     

Figure 1.  Three frames of the handrail sequence. 

 

                                                 
1A military truck. 
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The sensor data were collected and stored by several computers that are coordinated through an 
on-board ethernet network.  Data are not processed on line but are saved to disk in association 
with the precise time of acquisition (a process known as “time tagging”), to be analyzed off line 
after the collection.  The clocks of the various computers are roughly synchronized before a data 
collection via the network time protocol, but the exact point in the recording process identified 
by the time tag is not well defined in all cases.  For practical purposes, synchronization of the 
data is controlled by a common command to initiate collection of a data sequence (3 minutes in 
length, for the May 2003 FITG data collection), which is carried by the network to each of the 
data collection computers.  The accuracy of the synchronization is affected by lags in the 
network and by other unevaluated lags in the recording and sensing of phenomena by the various 
sensors.  Synchronization through time tags is at best a rough one, despite the millisecond 
resolution, and is discussed further in section 6.1. 
 

4. The Sensors 

The vehicle was equipped with an imaging LADAR unit, video cameras in a binocular 
stereoscopic configuration, a navigation (nav) unit based on the modular azimuth pointing 
system (MAPS) adapted from a self-propelled howitzer, a GPS (global positioning system) 
receiver, and several low resolution video cameras.  The LADAR, GPS, and low resolution 
cameras were not used in the study and are not further described.  The video cameras were used 
in this study as stand-alone vision sensors, not as a stereo pair.   

The navigation unit is built around a Honeywell MAPS, which is an inertial measurement unit.  
The MAPS contains precision ring laser “gyros”2, enabling the unit to track the orientation of the 
unit with respect to true north and gravity (“world coordinates”) at a claimed accuracy of 0.5 
milliradian (Honeywell, no date).  Position information from the unit is calculated internally on 
the basis of dead reckoning3.  GPS-augmented dead reckoning is available in the data set, but 
simple dead reckoning data were deemed more suitable for the study since the GPS-augmented 
data are prone to occasional “jumps”.  The dead reckoning data are quite noisy, however, as are 
the odometry data upon which they are based.  The most useful representation of the MAPS data 
relates the instantaneous location and orientation of the unit to global north, east, and down, 
available at 20 Hz.  So-called “strap-down” data (instantaneous velocities and rotational 
velocities in sensor coordinates) were not available. 

                                                 
2A ring laser gyro is similar in function to a gyroscope, and the etymological roots of the term are apparent, but it is not 

phenomenologically a gyroscope.  A gyroscope is a mechanical device whereas the ring laser gyro and its phenomenological 
cousin, the fiber optical gyro, are essentially optical devices. 

3“Dead reckoning is the process of estimating your position by advancing a known position using course, speed, 
time, and distance to be traveled.”  (http://www.deadreckoning.com/dead_html/). 
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The cameras are three-chip 640- by 480-pixel resolution, CCD (charge-coupled device) 
technology, which use a progressive scan-like mode in which odd and even fields are “grabbed” 
simultaneously at 30 Hz.  The output is analog RGB (red-green-blue) format and is digitized by a 
computer-mounted frame grabber board at 8 bits per pixel for each of red, green, and blue.  The 
resulting data stream is stored in uncompressed digital form at full temporal and spatial 
resolution in a redundant array of inexpensive disks (RAID).  The 8-mm lenses feature manual 
iris and focus so that a simple mathematical camera model can be used when warranted (e.g., for 
binocular stereo).  Camera electronic iris and automatic gain control functions are enabled so that 
the cameras deliver quality imagery under a range of illumination.  Frames are time tagged when 
digitized by the frame grabber, but the time tags exhibit substantial noise in comparison to the 30 
Hz at which the frames are known to be acquired by the cameras.  The actual timing of frame 
acquisition of both cameras is controlled by the internal timing circuitry of one of the cameras, 
conveyed to the other through the analog “genlock”4 interface. 

4.1 Egomotion Extraction 

Each image frame of the video imagery is processed to extract egomotion from frame to frame.  
The egomotion for image frame n is represented as a spatial transformation of the camera 
coordinate frame5 from the time when image n was acquired to the time image n+1 was acquired.  
The transformation is expressed as a rotation and translation of unit length in the coordinates of 
the camera at the time of image frame n.  The translation is expressed as a unit vector because 
the true magnitude cannot be determined in the absence of a known distance in the scene 
depicted by the image (Trucco and Verri, 1998).  The approach for computing the egomotion is 
based on an algorithm and software that we previously developed for stereo camera re-
calibration (Oberle, 2003).  Essentially, a four-step process is used.  In the first step, a Harris 
corner detector (Harris and Stephens, 1988) is initially used to identify point sets in image frame 
n and n+1, which correspond to features associated with corners.  Matching points in image 
frame n and n+1 are then identified with the following procedure.  Each corner point identified in 
image n is compared to every corner point identified in image n+1.  The comparison uses 3 by 3 
correlation windows centered at the points with the metric the sum of squared differences (SSD).  
The corner point in image n is matched with the corner point in image n+1 that minimizes the 
value of the SSD.  This produces an initial set of matched points where each element in the set 
consists of a point in image n, a matching point in image n+1, and the SSD value used to select 
the match.  We construct the final set of matched points from this set by deleting half of the 
elements with the highest SSD values.  The second step involves estimating the so-called 
“fundamental matrix” relating the two image frames.  By definition (Trucco and Verri, 1998),  

                                                 
4A common camera interface enabling the synchronization of video signals from one or more cameras. 
5Camera frame n associated with image n is a right-handed Cartesian coordinates system with the origin at the center or focus 

of projection using the perspective or pinhole camera model (Trucco and Verri, 1998, page 27).  Unless otherwise stated, the term 
“frame” refers to this camera-based coordinate frame rather than to a “frame” from an image sequence. 
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if pn  and pn+1  are a pair of corresponding homogeneous points in pixel coordinates in the n and 
n+1 images, respectively, the fundamental matrix, F , satisfies the equation  

 p pn+1
T

nF = 0. (1) 

The superscript T represents the matrix transpose.  Thus, the matching points identified in the 
first step can be used to estimate the entries of F.  Unfortunately, this calculation is extremely 
susceptible to noise in the location of the matching points, and straightforward approaches (e.g., 
matrix inversion) to solve the resulting system of equations generally yield poor results.  To 
mitigate the impact of noisy input data in the calculation, a variation of the RANdom SAmple 
Consensus (RANSAC) paradigm suggested by Torr (2002), the Maximum A Posteriori SAmple 
Consensus (MAPSAC), followed by a constrained nonlinear estimator is used in the fundamental 
matrix calculation.  The RANSAC paradigm attempts to minimize the impact of noisy data by 
randomly selecting a minimum sized subset (e.g., two points for a line, seven matched points for 
the fundamental matrix6) from the input data required to compute the fundamental matrix.  This 
process is repeated a sufficient number of times to ensure that the probability that at least one 
subset will be comprised of only “good” data points (i.e., those that satisfy a given condition 
such as equation 1) exceeds a pre-set level, usually 95% or 98%.  The best solution, i.e., 
estimated fundamental matrix, is the one that maximizes the number of data points satisfying the 
given condition.  Instead of simply determining the number of points satisfying a given 
condition, the MAPSAC paradigm introduces a negative logarithmic likelihood function and 
selects as the best solution the fundamental matrix that minimizes this likelihood function; see 
Torr (2002) for details.  The fundamental matrix from the MAPSAC process is based on seven 
data points and not the entire set of good data points.  To obtain an estimate based on all the 
good data points, the MAPSAC calculation is followed by a constrained nonlinear estimation of 
the fundamental matrix.  In our implementation, only the good data points associated with the 
MAPSAC-computed fundamental matrix are used.  The constrained nonlinear estimation is an 
iterative approach in which the entries of the fundamental matrix are iteratively adjusted to 
minimize the sum of weighted residuals under the constraints that the determinant of F  equals 
zero and the Frobenius norm of the top 2 by 2 sub-matrix of F  equals 1.  The fundamental 
matrix from the MAPSAC calculation is used as the initial estimate of F .  See Torr (chapter 4, 
2002) for specific details concerning the weighted residuals.  Step 3 in the egomotion calculation 
involves the estimation of the “essential” matrix from the fundamental matrix via the relationship 
(Trucco and Verri, 1998) 

 E M FM= T .  (2) 

The matrix M  is the matrix of the “intrinsic” parameters (Trucco and Verri, 1998) for the 
camera, which are known quantities from the camera calibration.  The essential matrix from 

                                                 
6Although the fundamental matrix has nine entries, its determinant must equal zero and one of its entries can be 

set to an arbitrary constant. Thus, there are only seven independent entries. 
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equation 2 is adjusted by means of singular value decomposition to ensure that the two essential 
matrix constraints (i.e., rank = 2 and nonzero singular values equal) are satisfied (Trucco and 
Verri, 1998).  Finally, in step 4, the essential matrix from step 3 is factored by means of singular 
value decomposition (Wang and Tsui, 2000) to identify candidate egomotion rotations and 
translations of unit length.  Back projection of a single image point in image n is used to 
determine the appropriate rotation-translation combination consistent with the input image 
information. 
 

5. Sensor Registration 

Each sensor has its own native coordinate frame, as does the vehicular platform to which the 
sensor subsystems are mounted.  As the vehicle follows a trajectory through space, the data 
stream from each sensor describes the trajectory of the sensor in its own coordinate frame.  The 
determination of the transformations among the coordinate frames of the various sensors is a 
process known as “registration”.  The transformations defined by the registration process are also 
known as “the registration”.  The sensors of this study were not registered in any meaningful 
fashion, although a rough registration of the stereo rig and the LADAR imager was described in 
Oberle and Haas (2002).  It is known that the camera was pointed roughly “forward” in the 
direction of travel of the data collection vehicle and was approximately upright.  It is also known 
that the navigation sensor is similarly aligned with the direction of travel of the vehicle and that 
it senses gravity directly.  So there is an approximate alignment between the two coordinate 
frames, but there remains an unknown translation and (more important) rotation between them.  
One intriguing possibility is that the rotational component of the registration between the sensors 
can be extracted from the rotational difference between each sensor’s representation of its 
trajectory.  This is discussed in more detail in section 8.   
 

6. Pre-processing 

Several decisions had to be made in the preparation of the data from the two sensors to facilitate 
comparison.  First, the data had to be aligned temporally, as described in section 6.1. Second, the 
data had to be placed in a consistent framework to allow comparison, as described in section 6.2.  
Finally, the data had to be depicted so that similarities and differences were apparent to the 
researcher, as described in section 6.3. 
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6.1 Temporal Alignment 

When stored sensor data from different sensors are reassembled for purposes of multi-sensor 
fusion and integration, the time tags are used for temporal alignment relative to the initiation of 
recording a data sequence.  The functional time base for a data element in a sequence is the 
difference in time between its time tag and the time tag value for the first element of the data 
sequence.  As observed previously, several problems existed in the time base of the HS data set.  
The imagery time tags showed substantial jitter, the two data records were tagged from different 
clocks, and the internal sampling rates of the two sensors are different.  For purposes of temporal 
alignment of a sequence of images with the nav sensor, the time tag was assumed to be correct 
for the first image of the sequence, and the rest of the images were assumed to occur at exact 30-
Hz intervals thereafter.  An unknown but roughly constant offset in the time base was thus 
substituted for the random frame-by-frame error in the imagery time tags.  To obtain pose 
estimates at corresponding times, re-sampling of the nav data was performed with linear 
interpolation.  Interpolation of translations is straightforward, and the interpolation of rotations is 
performed on the quaternion representation of the rotation, as suggested by Shoemake (1985).  
Inspection of initial results of the resulting data alignment strongly suggested that nav data 
lagged the egomotion data by as much as 100 milliseconds (ms), so a global offset was 
introduced in the nav time base.  That is, the nav data corresponding to an egomotion estimate at 
time t were interpolated from the measured nav data points with time tags just before and just 
after time (t + offset).  The value of the global offset (30 ms) was selected because it yielded the 
smallest cumulative error (over the entire subset) in estimated rotational magnitude between the 
egomotion estimate and the corresponding interpolated nav value.  The decision to interpolate 
nav data to the imagery time base, rather than vice versa, was somewhat arbitrary but makes it 
easier to use other elements of the images in other analyses.   

6.2 Consistent Representation 

After temporal alignment, the data are in the form of two sequences of observations: 

N={n(1),n(2), … n(m)} denotes the observations from the nav sensor, and 

E={e(1),e(2), … e(m)}denotes the observations from egomotion.   

Within a sequence, observations describe in some fashion the trajectory of the sensor and 
implicitly of the body-fixed coordinate system embedded in the sensor.  The trajectory of the 
other sensor is not identical and is represented in the coordinate system of the other sensor.  
However, it is known that a paired observation from the two sequences (e.g., {n(i) e(i)},∀  i),  is 
related by the kinematics of  being mounted to the same rigid HMMWV body at the same point 
in time.   

In order to compare the sequences from the two sensors in an “apples-to-apples” sense, three 
steps are necessary.  First, we define a notation.  Then, using that notation, we describe the 
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representations of the observations from each sensor.  Finally, we relate the manipulations 
necessary to render the representations consistent for the purpose of comparison. 

6.2.1 Notation 

Let τ i
j

   

 represent the transformation from coordinate frame i to frame j, expressed in coordinate 

frame i.  Thus, τ E
N

   

 represents the transformation between the egomotion coordinate frame and 
the coordinate frame of the nav system, and τ N

E  its inverse.  Since each sensor is affixed to the 
HMMWV, which is approximately a rigid body, the transformation between the two is time 
invariant, i.e., constant for any frame i, regardless of the instantaneous orientation in world 
coordinates of the HMMWV. 

As we manipulate the observations from the two sensors, we generate two parallel sequences of 
transformations, one relative to the instantaneous coordinate frame of the nav sensor and one to 
the instantaneous egomotion coordinate frame.  To distinguish between elements of the two 
sequences, we use a superscript:  N for nav, E for egomotion.  Therefore, we know, for a paired 
observation at some index i in the sequence, 

 τ τ τi
j

i
j

N
   

E

E
N= o  , and τ τ τi

j
i
j

E
   

N

N
E= o , 

in which 

o is the (non-commutative) coordinate transformation operator so that 

 τ τ τi
k

i
j

j
k

  

= o  . 

We know neither τ E
N  nor its inverse, however.  Furthermore, all the transformations we do know 

are estimates from noisy sensors.   

6.2.2 Representation 

The pose data n(j) from the nav sensor represent the measured transformation from local 
coordinates to world coordinates.  With the established notation, navigation data elements are of 

the form τ j
W

N   

.  The inverse of a data element n(j) is in the more useful form τ W
j

N   

 and is designated 
n’(j). 

The egomotion observation e(j) represents the estimated change in pose between image j and 

image (j+1), expressed in the coordinate frame of image j.  This is represented as τ j
j+1

E   

.  Its 
inverse e'(j) represents the estimated change in pose as one progresses backward in time through 

the image sequence, and it is of the form τ j
j
+1

E   

. 
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6.2.3 Manipulation 

A rotation from world coordinates can be expressed as the result of a sequence of frame-to-frame 
rotations with the notation 

 τ ττW
j

W
k

k j

k
k

   

=
=

= −
+1

1

1
1o Λ  

in which 

 
k i

k j

k
k

i
i

i
i

j
j

=

=
+ +

+
+

−=Λτ τ τ τ1 1
1
2

1o oLo  

and  

 τ W

1  is the initial pose of the sequence. 

Egomotion observations of frame-to-frame motion are phenomenologically equivalent to a 
derivative of the sequence of poses in global coordinates observed by the nav system, so we are 
taking some liberties with the mathematical terms “differentiate” and “integrate” in order to 
communicate the approach.  To compare the observations, two approaches are possible.  First, 
the frame-to-frame observations from egomotion can be compared to the global transformations 
observed by nav by the integration of the egomotion observations from the initial pose of the 
sensor.  Since the initial pose is known only in the nav frame, each transformation in the 
egomotion frame must be transformed to the nav frame.   

 ( )N
E

jk

k

N
E

k
k

jk

kW
j

W ken τττττ oooo )()1(
1

1

E
1

1

1

N
1

N −=

=

+
−=

=
ΛΛ ′=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  (3) 

Without knowledge of the registration transformation, τ E
N

  

, the transformation from world to 

local nav coordinates cannot be calculated from egomotion data.  However, if τ E
N

   

 is “near 
enough” to mathematical identity, the transformation from world coordinates can be 
approximated over short integral paths, although it will diverge in a cumulative and path-
dependent manner.   

Alternatively, one can “differentiate” the observations from the nav sensor {n(j)}, to compare 
them with the observations {e(j)} from egomotion. 

 τ τ τ τ τj
j

j
W

W
j n j n j+ += = +1 1 1

E   N   N   
   

N
E

   

N
E

   

o o o o( ) ' ( )  

Without knowledge of the registration, τ N
E

  

, the comparison is not exact, but the differences are 
systematic.  For a registration that is near enough to identity, the comparison may be meaningful. 
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Finally, it is important that the integration of egomotion observations is possible only for 
rotations, since egomotion does not estimate the magnitude of translations—only their direction.  
The notation developed for full transformations is equally useful for the degenerate case that 
concerns rotations only. 

6.3 Visualization 

To facilitate the recognition of consistency between the data streams from the two sensors, 
paired observations of sensor pose were plotted, corresponding to the time of each image in the 
sequence.  A rotation in three dimensions can be visualized as the magnitude of the rotation and 
the three-dimensional axis about which the rotation occurs.  This rotational axis can be 
represented as a unit vector.  The unit vector is defined in the coordinate frame of the individual 
sensor, but for the purposes of comparison, we invoke the assumption of near identity rotation 
between the two coordinate frames, and we defer further discussion of the assumption to section 
8.  For the purposes of visualizing differences between the two sequences of rotation 
observations, a quartet of graphs is generated, plotting paired observations of the rotation, 
indexed by the frame number n, in local coordinates as shown in table 1. 

Table 1.  Template for figures 2 and 4. 

θ(n), the magnitude of the rotation x(n), the longitudinal component of the rotation axis 
unit vector, about which roll occurs 

y(n), the transverse component of the rotation axis 
unit vector, about which pitch occurs 

z(n), the vertical component of the rotation axis unit 
vector, about which yaw occurs 

 
 

7. Results 

First, the incremental rotations are plotted and shown in figure 2.  As expected, they are quite 
noisy, but the rotational axis in particular shows quite clearly that the two sensors are measuring 
the same phenomenon. 

The plots may show evidence of some residual temporal misalignment, but the rotation 
magnitude error is minimized at this value of temporal offset, so improvement in the alignment is 
unlikely.  The anticipated systematic differences in the rotation axis attributable to rotational 
misregistration of sensor coordinate frames should be visible in the XY plots of figure 3 as a 
“skewedness” from the diagonal.  However, no such effect is apparent above the noise.   
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Figure 2.  Comparison of incremental rotations.  (Roll measured by the nav system  
exceeded 10 degrees and pitch by 5 degrees during this sequence.) 

 

Figure 3.  XY plots of incremental rotations. 
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Now let us compare raw nav rotation observations with egomotion frame-to-frame rotation 
observations integrated with registration rotation assumed to to be identity, as described in 
equation 3.  Results are shown in figure 4. 

 

Figure 4.  Comparison in world coordinates. 

Once again, it is apparent that both sensors are responding to substantially the same 
phenomenon.  As expected, the observations from the two sensors diverge over time, but there is 
no obvious way to determine how much of that divergence is attributable to violation of the 
identity registration assumption. 

Next, we compare between the two sensors the observations of direction of translation, shown in 
figure 5.  Remember that egomotion does not estimate the magnitude of the translation, only the 
direction.  The direction as expected is primarily in the longitudinal (“forward”) direction of the 
HMMWV carrying the sensors, but beyond that, the egomotion observations do not track the nav 
measurements particularly well.  As expected, the transverse translation is small, constrained by 
the steering effect of the wheels and tires.  The nav system estimates the transverse translation as 
nearly zero, but it is possible that the dead reckoning-based nav observations do not account for 
transverse motion resulting from the yaw acting along the vehicle wheelbase.  It is also possible 
that the transverse excursions recorded by the egomotion measurements are rotation effects 
attributable to the position of the camera at the opposite end of the vehicle from the rear axle 
where odometry is recorded. 
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Figure 5.  Comparison of incremental translation. 

A qualitatively significant effect is apparent in the vertical translations measured by the two 
sensors.  The nav system senses that its trajectory is roughly horizontal in its coordinate frame, 
while egomotion senses that it is consistently climbing (a negative translation in the “down” 
direction).  This is consistent with a camera axis tilted below the vehicle horizontal (the so-called 
“look-down angle” used to concentrate camera field of view on the ground rather than uselessly 
on the sky) during forward vehicle motion.  The camera system is known to have been so tilted, 
so the results are as expected. 
 

8. Registration From Trajectory 

The difference in the coordinate frames of the two sensors can, in principle, be seen in the 
difference in representation of an incremental transformation as seen by the two sensors.  In 

other words, τ E
N

   

 should be evident in the juxtaposition of τ j
j+1

E   

 and τ j
j+1

N   

, for any frame j.  We 
have seen evidence in the “vertical” element of juxtaposed incremental translations, but 
translations of different points of a rotating rigid body are not necessarily the same.  A 
kinematically cleaner place to observe it is in the rotation axis of incremental rotations because 
the rotation of any point on a rigid body is identical.   
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So let us from this point on consider only the rotational element of our transformations, τ i
j

  

.  For 

an incremental rotation, τ j
j+1

N   

, we know that τ τ τj
j

j
j+ +=1 1

N   
   

E  
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o , so for each pair of observations, we 
can calculate directly an estimate of the rotational registration between sensors: 
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However, implementation of this computation on data from the HS yielded estimates of 
registration which were not credible, varying substantially frame to frame rather than describing 
random variation about a single rotation as expected. 

8.1 Registration From Trajectory With Synthetic Data 

A small experiment was conducted with synthetic data to examine the effectiveness of 
computing registration from trajectory.  Data from a synthetic sensor were created by rotation of 
the axis of the rotation data from the HS egomotion set by a known rotation (1 degree about the 
pitch axis).  The data were equivalent to a “perfect” (all noise common mode) second egomotion 
sensor on the same rigid platform, with known registration.  The registration was then back 
calculated with equation 4 and plotted in figure 6.  The error in the computed registration was 
consistently greater when the axis of motion of the platform coincided with the axis of rotation of 
the registration, e.g., when motion of the platform was substantially a pitch motion.  The data 
were then edited to eliminate instances of nearly pure pitch motions by deletion of data points 
where the pitch component of the unit rotation axis was outside the range (-0.5 0.5).  The 
remaining registrations were much more correct, as shown in figure 7.  If we can correctly 
“guess” the registration angle of real sensors and if we can cull motions near that angle, we may 
be able to confirm our guess.  Evaluating the effectiveness of this approach is beyond the scope 
of this study, but a necessary condition for its success appears satisfied. 

The registration is calculated for each of the 200 pairs of data.  The top plot of the triple shows 
the magnitude of the calculated registration; the middle plot shows the components of the unit 
rotation axis.  The third plot of the triple shows the pitch component of the egomotion. 
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Figure 6.  Registration of synthetic sensor from trajectory.   

 
Figure 7.  Registration of synthetic sensor from the same trajectory purged of motions 

near the known registration axis.  (The magnitude of the computed registra-
tion rotation is approximately 1 degree, as expected, and the direction is 
almost pure pitch, again as expected.) 
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9. Conclusions 

1. In the data set considered in this study, the rotational egomotion calculated from camera 
imagery approximates navigation measurements taken concurrently.  Both measurements 
are noisy, however, and further work fusing the two should include signal processing 
and/or statistical methods to smooth the signals and/or eliminate outliers.  Another source 
of noise is temporal misalignment of the two recorded data streams.  Kinematics say the 
magnitude of the rotation angle sensed by the two sensors ought to be invariant to the 
registration.  Selecting the offset in time base, which minimizes the differences between the 
estimates of this parameter, is one way to align the data streams, and this data set delivered 
a credible although unverifiable result.   

2. Registration from trajectory appears to be much more difficult than the formulation of the 
problem would imply.  It is worth pursuing, however, because no other way is apparent to 
register the imaging sensors (with which the UGV plans its path across terrain) with the 
navigation system that tracks the trajectory that the UGV follows.  Simple calculation of 
the registration does not look promising, so other approaches (such as the one presented in 
section 8.1) should be investigated.   

3. In the absence of independent ground truth, there is nothing upon which to base a judgment 
concerning translation measurements except the agreement between the sensors, and the 
translational trajectories do not track well.  Some dissimilarities are to be expected because 
of kinematics, since the two sensors were not co-located.  We are not convinced of the 
ability of dead reckoning to adequately account for small translations in the transverse and 
vertical directions.  Future work in fusion should, if possible, use a nav sensor with explicit 
measurement of transverse and vertical motion components. 

4. In general, agreement between noisy sensors is an unsatisfactory measure of success.  It is 
unclear how ground truth for this study could have been measured, so accuracy of the 
measurement may not be easy to determine.  It should be possible to define a measure that 
can be compared for consistency across the iterations, however.  For example, three-
dimensional reconstructions of point features can be tracked across imagery sequences to 
estimate the precision, if not the accuracy, of egomotion estimates.  Future studies should 
endeavor to identify and implement such measures. 
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Appendix A.  MATLAB7 Code to Plot Juxtaposed Translations 

% NavEgoTran.m 
% This routine compares the translations sensed by the nav system 
% with translations detected by calculating the egomotion of the left camera 
% of a stereo pair.  The sensor data came from a sequence corresponding to 
% frames 30300 to 30499 (approx 7 seconds) of stereo imagery. 
 
% this version compares incremental translations between nav and egomotion 
% approximately in the platform coordinate frame  
 
% First get the nav data, contained in “navVector” 
% The variables start1, end1, offset, navfname, and vsfname confirm the source of the navVector 
data 
% and are not used in this routine 
load 'nav.mat'; 
rot2=[navVector.rot]; 
rot4=reshape(rot2,4,200)';      % rot4 is rotation from body-fixed to world 
flipr=-1*eye(4);flipr(1,1)=1; 
rot3=rot4*flipr;                % rot3 is from world to body-fixed -- the direction the truck is facing 
 
% now calculate the frame-to-frame translations reported by nav 
tran=[navVector.tranRel]; 
nFrames=length(tran)/3; 
tran2=reshape(tran,3,nFrames)'; 
deltaTran(1:nFrames-1,:)=tran2(2:nFrames,:)-tran2(1:nFrames-1,:); 
for i1=1:nFrames-1,dist(i1)=norm(deltaTran(i1,:)); end 
 
T4=zeros(length(deltaTran),3); 
 
% rotate the translation vector to the coordinate frame of the sensor 
% (so the vector coincides roughly with platform coordinates) 
for i=1:length(deltaTran) 
    R1=rot3(i,:); 
    R2=q2R(R1); 
    p1=deltaTran(i,:)'; 
    p2=(qpMult(R1,p1)); 
    T3(i)=norm(p2); 
    T4(i,:)=p2/norm(p2); 
end 
 
% Now fetch the egomotion data, in Rot (Rotation matrices for each frame, not used here),  
%  T (translation vector for each frame), and q (quaternion form of rotations) 
egoMatFile='egoL.mat' 
                                                 
7MATLAB® is a registered trademark of The MathWorks. 
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clear egoMatFileNew; 
egoMatFileNew=input('input mat file containing egomotion data, in single quotes') 
if length(egoMatFileNew)>0 egoMatFile=egoMatFileNew,end 
load(egoMatFile); 
qp=zeros(size(q)); 
qpInNavCoorsd=zeros(size(qp)); 
 
figure,subplot(2,2,1),plot(T3(:),'red'),title('incremental platform translation (meters) ') 
% interchange axes to compare similar  
subplot(2,2,3),plot(T(:,1)),hold,plot(T4(:,2),'red'),title('platform transverse -- y ') 
subplot(2,2,4),plot(T(:,2)),hold,plot(T4(:,3),'red'),title('platform verticall -- z ') 
subplot(2,2,2),plot(T(:,3)),hold,plot(T4(:,1),'red'),title('platform longitudinal -- x ') 
 



 

21 

Appendix B.  MATLAB Code to Plot Juxtaposed Incremental Rotations 

% navEgoInc.m 
% This routine compares the rotations sensed by the nav system 
% with rotations detected by calculating the egomotion of the left camera 
% of a stereo pair.  The sensor data came from a sequence corresponding to 
% frames 30300 to 30499 (approx 7 seconds) of stereo imagery. 
 
% this differs from navEgo in that the rotations considered are incremental,  
% not integrated over the sequence 
 
% First get the nav data, contained in “navVector” 
% The variables start1, end1, offset, navfname, and vsfname confirm the source of the navVector 
data 
% and are not used in this routine 
 
load('nav.mat') 
rot2=[navVector.rot]; 
rot4=reshape(rot2,4,200)';      % rot4 is rotation from body-fixed axis back to world coords 
flipr=-1*eye(4);flipr(1,1)=1; 
rot3=rot4*flipr;                % rot3 is rotation from world coords to body-fixed 
 
% now differentiate, defining rotations from frame j to (j+1) in rot5 
rot5=zeros(size(rot4)); 
for i=1:length(rot5)-1 
    qq2=rot4(i,:);qq1=rot3(i+1,:);  % first comes a rotation from frame j to world, then from world 
to frame j+1 
    rot5(i,:)=qqMult(qq1,qq2);      % qqMult(q1,q2) uses quaternion multiplication notation, 
means q2 happens first 
end 
rot5=rot5(1:length(rot5)-1,:);      % no increment for the last frame 
 
% Now fetch the egomotion data, in Rot (Rotation matrices for each frame, not used here),  
%  T (translation vector for each frame), and q (quaternion form of rotations) 
egoMatFile='egoL.mat' 
clear egoMatFileNew; 
egoMatFileNew=input('input mat file containing egomotion data, in single quotes') 
if length(egoMatFileNew)>0 egoMatFile=egoMatFileNew,end 
load(egoMatFile); 
 
% isolate and normalize the quaternian rotation vector for plotting 
for i=1:(length(q)) 
    i1=i; 
    rotV(i1,:)=rot5(i1,2:4)/norm(rot5(i1,2:4)); 
    qpV(i1,:)=q(i1,2:4)/norm(q(i1,2:4)); 
end 
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% convert w to degrees and plot juxtaposed incremental rotations 
rot6=2*acos(rot5(:,1))/pi*180;q6=2*acos(q(:,1))/pi*180; 
figure,subplot(2,2,1),plot(q6(:)),hold,plot(rot6(:),'red'),title('incremental platform rotation 
(degrees) ') 
subplot(2,2,2),plot(qpV(:,1)),hold,plot(rotV(:,2),'red'),title('platform pitch axis -- y ') 
subplot(2,2,3),plot(qpV(:,2)),hold,plot(rotV(:,3),'red'),title('platform yaw axis -- z ') 
subplot(2,2,4),plot(qpV(:,3)),hold,plot(rotV(:,1),'red'),title('platform roll axis -- x ') 
 
% now in XY plot form 
plot1=q6;plot2=rot6; 
figure,subplot(2,2,1),plot(plot1,plot2,'.'),xlabel('egomotion'),ylabel('nav'),title('incremental 
rotation magnitude (degrees)')  
plot1=qpV(:,3);plot2=rotV(:,1); 
subplot(2,2,2),plot(plot1,plot2,'.'),xlabel('egomotion'),ylabel('nav'),title('incremental roll axis -- x 
') 
plot1=qpV(:,1);plot2=rotV(:,2); 
subplot(2,2,3),plot(plot1,plot2,'.'),xlabel('egomotion'),ylabel('nav'),title('incremental pitch axis -- 
y ') 
plot1=qpV(:,2);plot2=rotV(:,3); 
subplot(2,2,4),plot(plot1,plot2,'.'),xlabel('egomotion'),ylabel('nav'),title('incremental yaw axis -- z 
') 
 
% calculate and plot computed registration 
for i=1:length(qpV) 
    v1(1)=qpV(i,3);v1(2)=qpV(i,1);v1(3)=qpV(i,2); 
    v2=rotV(i,:); 
    s=acos(dot(v1,v2)); 
    vx=cross(v1,v2); 
    sC(i)=s/pi*180;; 
    vC(i,:)=vx/norm(vx); 
end 
     
figure,subplot(2,1,1);plot(sC(:),'black');title('registration'),subplot(2,1,2);plot(vC(:,1),'red');hold;p
lot(vC(:,2),'green'); 
plot(vC(:,3),'blue');hold off 
 



 

23 

Appendix C.  MATLAB Code to Plot Juxtaposed Absolute Rotations 

% navEgoAbs.m 
%  This routine compares the rotations sensed by the nav system 
% with rotations detected by calculating the egomotion of the left camera 
% of a stereo pair.  The sensor data came from a sequence corresponding to 
% frames 30300 to 30499 (approx 7 seconds) of stereo imagery. 
 
% this differs from navEgo in that the rotations considered are incremental,  
% not integrated over the sequence 
 
% First get the nav data, contained in “navVector” 
% The variables start1, end1, offset, navfname, and vsfname confirm the source of the navVector 
data 
% and are not used in this routine 
 
load('nav.mat') 
rot2=[navVector.rot]; 
rot4=reshape(rot2,4,200)';      % rot4 is rotation from body-fixed axis back to world coords 
flipr=-1*eye(4);flipr(1,1)=1; 
rot3=rot4*flipr;                % rot3 is rotation from world coords to body-fixed 
 
% now differentiate, defining rotations from frame j to (j+1) in rot5 
rot5=zeros(size(rot4)); 
for i=1:length(rot5)-1 
    qq2=rot4(i,:);qq1=rot3(i+1,:);  % first comes a rotation from frame j to world, then from world 
to frame j+1 
    rot5(i,:)=qqMult(qq1,qq2);      % qqMult(q1,q2) uses quaternion multiplication notation, 
means q2 happens first 
end 
rot5=rot5(1:length(rot5)-1,:);      % no increment for the last frame 
 
% Now fetch the egomotion data, in Rot (Rotation matrices for each frame, not used here),  
%  T (translation vector for each frame), and q (quaternion form of rotations) 
egoMatFile='egoL.mat' 
clear egoMatFileNew; 
egoMatFileNew=input('input mat file containing egomotion data, in single quotes') 
if length(egoMatFileNew)>0 egoMatFile=egoMatFileNew,end 
load(egoMatFile); 
 
% isolate and normalize the quaternian rotation vector for plotting 
for i=1:(length(q)) 
    i1=i; 
    rotV(i1,:)=rot5(i1,2:4)/norm(rot5(i1,2:4)); 
    qpV(i1,:)=q(i1,2:4)/norm(q(i1,2:4)); 
end 
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% convert w to degrees and plot juxtaposed incremental rotations 
rot6=2*acos(rot5(:,1))/pi*180;q6=2*acos(q(:,1))/pi*180; 
figure,subplot(2,2,1),plot(q6(:)),hold,plot(rot6(:),'red'),title('incremental platform rotation 
(degrees) ') 
subplot(2,2,2),plot(qpV(:,1)),hold,plot(rotV(:,2),'red'),title('platform pitch axis -- y ') 
subplot(2,2,3),plot(qpV(:,2)),hold,plot(rotV(:,3),'red'),title('platform yaw axis -- z ') 
subplot(2,2,4),plot(qpV(:,3)),hold,plot(rotV(:,1),'red'),title('platform roll axis -- x ') 
 
% now in XY plot form 
plot1=q6;plot2=rot6; 
figure,subplot(2,2,1),plot(plot1,plot2,'.'),xlabel('egomotion'),ylabel('nav'),title('incremental 
rotation magnitude (degrees)')  
plot1=qpV(:,3);plot2=rotV(:,1); 
subplot(2,2,2),plot(plot1,plot2,'.'),xlabel('egomotion'),ylabel('nav'),title('incremental roll axis -- x 
') 
plot1=qpV(:,1);plot2=rotV(:,2); 
subplot(2,2,3),plot(plot1,plot2,'.'),xlabel('egomotion'),ylabel('nav'),title('incremental pitch axis -- 
y ') 
plot1=qpV(:,2);plot2=rotV(:,3); 
subplot(2,2,4),plot(plot1,plot2,'.'),xlabel('egomotion'),ylabel('nav'),title('incremental yaw axis -- z 
') 
 
% calculate and plot computed registration 
for i=1:length(qpV) 
    v1(1)=qpV(i,3);v1(2)=qpV(i,1);v1(3)=qpV(i,2); 
    v2=rotV(i,:); 
    s=acos(dot(v1,v2)); 
    vx=cross(v1,v2); 
    sC(i)=s/pi*180;; 
    vC(i,:)=vx/norm(vx); 
end 
     
figure,subplot(2,1,1);plot(sC(:),'black');title('registration'),subplot(2,1,2);plot(vC(:,1),'red');hold;p
lot(vC(:,2),'green'); 
plot(vC(:,3),'blue');hold off 
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